
Test data and testing of spelling checkers

Test data and testing of spelling checkers

Sjur Moshagen
UiT Norgga árktalaš universitehta

Uppsala, 13. november 2014

Test data and testing of spelling checkers

Content

Overview

Test data
The Nordplus project
The error markup format
The collected corpora
Corpus processing tools

Speller testing
Testbench architecture
Running tests
Browsing the test results
Extending the test bench

Wrapping up
Future work
Conclusion

Test data and testing of spelling checkers

Overview

Overview

I Many ways of testing spellers:
I Counting red squiggles and suggestions
I Automatically running corpora through the spell checker

I Presenting a project today:
I manually collected error corpus
I manually marked up for spelling errors
I converted to a common xml format
I used in an automated test bench

Test data and testing of spelling checkers

Overview

Overview 2

I Measures automatically:
I precision, recall and accuracy
I suggestion quality

I It does also facilitate research on spelling errors
I Supports five different speller engines
I Open source and portable

Test data and testing of spelling checkers

Test data

Test data

I To test one needs test data
I To do fast and repeated testing one needs automatisation
I To do automated testing one needs test data in a systematic

and consistent format
I Thus, the Divvun group started building a test corpus that

used a simple markup for identifying spelling errors, as part of
the work to develop proofing tools for the Sámi languages

I This markup was further enhanced by Lene Antonsen in her
work on L2 spelling errors, and later L1 errors

Test data and testing of spelling checkers

Test data

The Nordplus project

The Nordplus project

Goals:
I To build a corpus of running text containing at least 1000

spelling errors
I One such corpus each for Greenlandic, Icelandic, North, South

and Julev Sámi
I Further modularise and improve portability of the speller test

bench
I Test at least one speller for each language against the

collected corpora
I Rebuild the test result browser
I To use the test results of the tested spellers to suggest

improvements to the developers, and as a basis for further
discussion and research on proofing tools

Test data and testing of spelling checkers

Test data

The error markup format

The error markup format

I The error markup format was based on the earlier work
I It differentiates between six markup types (≈error types) - the

separator symbol is listed in parenthesis behind each type, its
use will be explained on the following slides

I unclassified error (§)
I non-word error ($)
I real-word error (¢)
I morphosyntactic error (£)
I syntactic error (¥)
I lexical error (€)
I foreign text & noise (∞)

Test data and testing of spelling checkers

Test data

The error markup format

Error markup syntax

I The syntax can be illustrated as follows:

... text (error)$(classification|correction) more text ...

I It is possible to nest the markup:

... text (de e girde (haleda)$(vowc,a-á|háleda))¥(wo|de girde e
háleda) more text ...

I The last example illustrates the use of the separator symbol: it
both separates the error from the correction, and informs the
markup parser of what type of error is being marked up, to
help in parsing and constraining the markup for easier
detection of markup errors.

I Parentheses are used to define the scope of an error

Test data and testing of spelling checkers

Test data

The error markup format

More error markup syntax

I As we just saw, the markup is useful for much more than just
marking up speller errors

I At the moment we only make use of non-word errors ($) plus
unclassified errors (§), which we treat as non-word spelling
errors.

I During corpus markup, other errors have been marked up as
well, to the extent possible within the given time constraints,
but this markup is not checked, and there are probably many
other types of errors that are not identified and marked up

I Still, the error corpora we have built should be quite valuable
also for other usages than to test spelling checkers

Test data and testing of spelling checkers

Test data

The error markup format

Error markup in files and conversion to xml

I The error markup is manually added to copies of the original
files

I Our corpus tools convert the markup and other textual
features to an xml document. The error markup ends up like
the following xml:

I More information about the error markup syntax, and
information on how errors are classified, can be found on
http://divvun.no/doc/proof/index.html

http://divvun.no/doc/proof/index.html

Test data and testing of spelling checkers

Test data

The collected corpora

Corpus sizes

Language Total size Nº of misspellings % misspellings
Greenlandic (KAL) 75 508 1 904 2,52
Icelandic (ISL) 163 172 1 062 0,65
Julev Sámi (SMJ) 35 792 1 866 5,21
North Sámi (SME) 227 156 11 181 4,92
South Sámi (SMA) 181 701 16 390 9,02

Collecting and marking up the texts required 2-3 man months each
for ISL, KAL and SMJ. SMA and SME could build on a lot of
earlier work, and the invested time isn’t directly comparable with
the other languages.

Test data and testing of spelling checkers

Test data

Corpus processing tools

Corpus processing tools

I Our corpus infrastructure contains one tool to convert
documents in different formats to xml: convert2xml

I ... as well as a tool to extract different projections of the xml
files for use in different contexts: ccat

I ccat has a number of features related to processing and
printing of error markup

I Both tools are written in Python

Test data and testing of spelling checkers

Speller testing

Speller testing

I With proper test data available, we can test the available
spellers

I For that we use our speller test bench

Test data and testing of spelling checkers

Speller testing

Testbench architecture

Architecture

I Configuration and portability: Autotools
I Multilingual support through the templating infrastructure by

Divvun & Giellatekno
I Modular and extendable speller integration
I Modular processing & conversion of speller output

Test data and testing of spelling checkers

Speller testing

Running tests

Running tests

I ./autogen.sh
I ./configure
I make
I The test bench can either use corpus data in our corpus

repositories, or it can take as input a single, specified document
I The output is an xml file that can be inspected as is
I The xml file is also made available in a test result browser

available on the net

Test data and testing of spelling checkers

Speller testing

Running tests

Basic test results

Lang./speller Prec. Recall Accuracy Corr.1 Corr.1-5
ISL/Hunspell 12,13% 72,37% 96,51% 56,84% 67,66%
ISL/Púki 61,45% 61,45% 99,45% 39,64% 69,82%
KAL 15,45% 84,33% 87,48% 20,57% 22,37%
SMA/Word 83,05% 91,91% 94,63% 71,75% 79,98%
SME/Word 74,75% 86,62% 97,60% 61,82% 79,85%
SME/Hunspell 63,63% 84,43% 96,81% 60,45% 77,88%
SMJ/Word 69,10% 91,35% 97,01% 58,57% 72,63%

Test data and testing of spelling checkers

Speller testing

Browsing the test results

Browsing the test results

I An older version of the browser is available at
http://divvun.no/doc/proof/index.html

I A new version is under development, both more flexible and
more restricted

I More flexible:
I Search for error types
I Display suggestion quality data for specific error types
I Easier comparison of spellers

I More limited:
I Only True Positives are listed and available for inspection in

the browser
I This is to avoid the most obvious temptations to improve the

speller by fixing the «errors» reported by the test. But: such
fixes destroys the gold standard! Thus, we will not display that
data.

http://divvun.no/doc/proof/index.html

Test data and testing of spelling checkers

Speller testing

Extending the test bench

Extending the test bench

I Since the test bench is modular, it is easy to extend it to
support new speller engines

I Two steps are required:
I A wrapper around the speller engine
I A parser for the output produced by the speller

I The wrapper can be a single shell command, or it can be a
complex script driving a graphical word processor

I Command-line spellers are very easily integrated
I Graphical word processors require much more work with less

reliable results, and should be avoided if possible

Test data and testing of spelling checkers

Wrapping up

Future work

Future work

I Add support for running on Windows and test MS Office
spellers using VB (required for testing the MS spellers for e.g.
Norwegian, Swedish and Danish)

I Add support for more speller engines
I Improve the test result browser
I Create error markup automatically from either pairs of files

with unproofed and proofread text, or from e.g. MS Word’s
change tracking features

I Collect and mark up texts for some of the majority languages,
in cooperation with the language councils

I Test more spellers for more languages
I Make a releasable version for others to use

Test data and testing of spelling checkers

Wrapping up

Conclusion

Conclusion

I A nice set of error corpora for five languages
I An extendable test bench for spelling checkers
I A set of conventions for marking up errors in the original files
I A set of tools for converting this markup to xml and further

process this xml
I Everything is open source, even parts of the test data
I Having everything open is problematic for the quality of future

test results - it is very easy to cheat and thus destroy the gold
standard

I The new test result browser makes better speller comparison
I The test bench could help in the general effort to improve

reproducability for language technology research

Test data and testing of spelling checkers

Wrapping up

Conclusion

Thanks

I Thanks to Nordplus Sprog for financing the project
I Thanks to Børre Gaup, Elin Neshamar, Hulda Óladóttir, Inga

Lill Sigga Mikkelsen, Maja Kappfjell, Thomas Omma and Tomi
Pieski for participating

I Thanks to Friðrik Skúlason for letting us evaluate the Icelandic
speller Púki, and to Tino Didriksen for providing a
command-line interface to the Greenlandic speller

I Thank you for listening!

	Overview
	Test data
	The Nordplus project
	The error markup format
	The collected corpora
	Corpus processing tools

	Speller testing
	Testbench architecture
	Running tests
	Browsing the test results
	Extending the test bench

	Wrapping up
	Future work
	Conclusion

